Technical Information and Technical Column
当コラムでは、金型劣化事例について数多く分析調査を行い、原因解析を行っているエバーロイが、専門家の視点で超硬金型の劣化について説明します。
>>放電加工とは?放電加工の基礎知識やメリット・デメリットを徹底解説
摩耗による金型形状部の減耗
摩耗とは摩擦により生じる固体表面の減耗であり、その機構の違いから大きく以下の4種類に分けられます。凝着摩耗
金型表面にある微少な凹凸の突起部などの接触面への材料の凝着によりかかる高い圧力の作用により、その凝着部が剪断力によって破壊され摩耗粒子が発生する摩耗であり、超硬合金の場合には主にバインダ(結合相金属)部分で被加工材との凝着を生じ、結合相金属部分の剪断破壊や、被加工材元素が結合相金属内に拡散してWC粒子を結合する力が弱まり凝着摩耗が進行します。このため超硬合金で主に結合相金属として用いられるCoとの親和性の高いFeやCuなどが被加工材である場合にはこの影響が生じやすくなり凝着摩耗の進行が促進されます。アブレイシブ摩耗
すべり合う表面の硬い突起が柔らかい基材を引っ掻いて掘り起こすことで、摩耗粒子が発生する摩耗状態になります。またた、すべり面の一方に硬質な摩耗粒子などが挟まれ埋め込まれることでさらに摩耗を促進します。腐食摩耗
摩擦熱による高温下や、腐食環境下において、酸化物や反応生成物の発生と脱落が繰り返されることにより摩耗粒子が生じます。酸化物や反応生成物は一般的に元の母材よりも脆く、母材との付着力が乏しくなるため剪断力により摩耗粉として容易に脱落し、摩耗が進行します。疲労摩耗
繰り返し応力により、超硬合金の微小領域でひずみが蓄積することで、Co結合相の原子配列の構造が変化します。 Co結合相の原子配列の構造が変化してしまった超硬合金は、繰り返し応力による塑性変形に対し応じられなくなってしまうため、疲労破壊が起こります。疲労破壊が生じることで、超硬合金では摩耗粉の脱落が発生します。破損による金型の劣化
金型へかかる負荷と、金型の加工状態や形状、劣化状態などとの兼ね合いにより金型の破損が生じる場合があります。過負荷要因による破損
金型を使用する場合において、金型自体にかかる負荷が使用している超硬材種の耐荷重を超える場合において超硬金型の破損が生じる場合があります。金型形状による局所的応力集中による破損
先に挙げた過負荷要因による破損の1種ですが、金型の凹角部、R形状部や、凹み形状部など局所へ特に応力集中が生じやすい形状部があった場合にそれを起点として破損を生じる場合があります。(ノッチ・エフェクト、切り欠き効果)レトルト食品や、シャンプーの詰め替えの袋を破る場合に切込みの無い部分では力をかけても全く切れないが、切込み部では容易に切れる状態が近いイメージになります。超硬合金では他で挙げた摩耗や、腐食などの劣化や、加工、取り扱い時に生じたキズなども複合的に作用し応力集中起点となる場合があります。衝撃負荷要因による破損
硬質な材料が金型に衝突することで局所に集中した衝撃的負荷が生じ破損に至ります。実際の事例として金型の干渉や、取り扱い時における治工具の衝突などが挙げられます。金型使用の際には認識されていない場合があり、不具合が生じた金型の詳細な分析調査により認められた微少な衝突の痕跡の位置や状態などから想定される製造工程の問題について見直しをいただいて衝突の事実が確認される事があります。微小な欠け(チッピング)
衝撃的な接触により刃先、エッジ部分に大きな圧力がかかり生じる角の微少部分の欠損、金型使用時の条件や環境要因により発生します。超硬材種の種類により耐チッピング性や、チッピング発生時の欠損サイズの大小に差を生じます。腐食による金型の劣化
超硬材の主に結合相金属に対する化学的作用により結合相金属の劣化による結合力の低下や欠損が生じます。腐食の種類をご説明します。水分付着と電気化学的作用による影響
超硬合金は硬質材料であるため機械的加工が難しく金型への加工時においては放電加工が用いられる場合があり、切断加工などにおいては加工速度の速さから水ワイヤ放電加工が用いられる場合があります。基本的に超硬合金の主成分であるWCやCoは水とは反応しにくいですが、超硬を水中へ浸漬した場合には空気/水界面付近における電気化学的作用により腐食が生じる場合があります。 空気/水 界面では溶存酸素濃度が高くなり、カソード反応が促進され界面から遠い中央部ではアノード反応が進行しCoが溶出します。 アノード反応: Co→Co2+ + 2e- カソード反応(空気/水界面側):1/2O2 + H2O + 2e- →2OH-腐食成分の付着
腐食については、以下の記事にて詳しく説明しております。是非ご確認ください。 >>超硬合金の腐食の原理とその対策方法とは?水放電加工による影響
ワイヤ放電加工においてワイヤ電極と被加工材の間に生じる電位差を駆動力とした電解腐食が生じます。しかしながら、最近では放電加工機の制御技術の向上により電解腐食の発生は抑制され腐食の発生影響は小さくなっています。高温による熱酸化
高温化では結合相金属の酸化反応が促進され酸化物へ変化することで、結合力が低下し強度低下を生じます。その他劣化を促進させる要因
その他にも金型の劣化を促進させる原因があります。金型セッティングの偏りによる局所的過負荷
パンチとダイなど金型を組み合わせて使用する場合、このセッティングに偏りがあった場合 クリアランスが不均一になりクリアランスが狭くなった個所では加工時の負荷が局所的に高くなり劣化影響が促進されます。放電加工によるダメージの残存
放電加工によるマイクロクラックや溶融軟化層が深く生じ、それらが後の加工でも取り切れずに残る場合には金型へ負荷がかかった場合の破壊の起点になる場合があります。>>放電加工とは?放電加工の基礎知識やメリット・デメリットを徹底解説